
Grok: The word "grok", coined in the 
novel, made its way into the English 
language. In Heinlein's invented Martian 
language, "grok" literally means "to drink" 
and figuratively means "to comprehend", 
"to love", and "to be one with". This word 
rapidly became common parlance among 
science fiction fans, hippies, and later 
computer programmers[16] and 
hackers[17], and has since entered the 
Oxford English Dictionary.[18]

Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the 
topic. They are neither a substitute for attending the lectures nor for reading the 
assigned material.

1

https://en.wikipedia.org/wiki/Stranger_in_a_Strange_Land

https://en.wikipedia.org/wiki/Stranger_in_a_Strange_Land


N-2&3: Decision Making, FSMs

1. How can we describe decision making?
2. What makes FSMs so attractive? What is difficult to do with them?
3. Two drawbacks of FSMs and how to fix?
4. What are the performance dimensions we tend to assess?
5. What are two methods we discussed to learn about changes in the world 

state?
6. FSMs/Btrees: R___ :: Planning : D____
7. When is the R__ good? When is D__?
8. H______ have helped in most approaches.
9. What are two methods we discussed to learn about changes in the world 

state?



N-1: Decision Making, D-trees

1. How many outcomes does a D-tree produce?

2. What are advantages of D-Trees?

3. Discuss the effects of tree balance.

4. Must D-trees be a tree?

5. Can D-trees translate into rules? If so how?

6. How can we use d-trees for prediction?

7. What is the notion of overfitting?

Decision trees can represent any Boolean function of the input 
attributes

More on learning Dtrees: 
https://courses.cs.washington.edu/courses/cse573/12sp/lectures/19-dtree.pdf
https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf

https://courses.cs.washington.edu/courses/cse573/12sp/lectures/19-dtree.pdf
https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf


Learned D-tree: how well do they work?

• Many case studies have shown that decision trees are at least 
as accurate as human experts. 
– study for diagnosing breast cancer had humans correctly classifying 

the examples 65% of the time; the decision tree classified 72% 
correct

– British Petroleum designed a decision tree for gas-oil separation for 
offshore oil platforms that replaced an earlier rule-based expert 
system 

– Cessna designed an airplane flight controller using 90,000 examples 
and 20 attributes per example

4
https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf

https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf


Reminder

• “What Makes Good AI – Game Maker’s Toolkit”

– https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s

– https://www.patreon.com/GameMakersToolkit

– React/adapt to the player – no learning required (authoring is)

– Communicate what you’re thinking

– Illusion of intelligence; more health & aggression can be a proxy for 
smarts

– Predictability is (usually) a good thing

• Too much NPC stupidity can ruin an otherwise good game

5

https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s
https://www.patreon.com/GameMakersToolkit


BEHAVIOR TREES (M CH. 5.4)

6



What if…

• We could fail gracefully?

– If “confused” enter more and more general states

• Encode sequences of states?

– Without having to bog each state down tracking more 
variables/conditions



Behavior Trees (B trees)

• Popular in subsections of 
industry since 2004; have reach 
ubiquity 

– Halo 2

– Bioshock

– Spore

• Easy to design

• Easy to alter

• Fail gracefully



Behavior Trees

• Simple reactive planning that is 
synthesis of: HFSM, Scheduling, 
Planning, Action Execution
– Mathematical Model of Plan Execution 

– describe switching between a finite 
set of tasks in a modular fashion

– (Manually provided) tree of behaviors 
specifies what an agent should do 
under all circumstances 

– Path from root to leaf represents one 
course of action. All paths, all COAs

– Search proceeds left-to-right (ie DFS)

• Decomposition allows flexibility & 
easy GUI integration
– Easy to understand

– Easy for non-programmers to create

• Aren’t good in all instances… (stay 
tuned)

• Instead of state, employ tasks

• Composable, self contained, 
encourages reuse
– Delegation of concerns – don’t need to 

know how each sub-task implemented

9



Behavior Trees

• All nodes (tasks/behaviors) return success, failure, none/running, or error
– Behavior tree made of hierarchically connected tasks (not states!)

• Types of nodes:
– Actions/Execution (leaf node): do something in the world
– Conditions (leaf node): make a decision based on world condition
– Composites/Control flow (one parent, one+ children): combine multiple tasks

• Prioritized list: success if any child succeeds in order
• Sequence: failure if any child fails in order
• Sequential-looping: keep doing sequence until a failure
• Probabilistic: choose probabilistically from set
• One-off (random or prioritized): pick a single child randomly or with some priority

– Decorators (one parent, one child): modify child task behavior 
• e.g UntilFail, RunLimit, Semaphore

10



https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/index.html

11https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/index.html
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html


Behavior Tree Structure

12

M&F 5.22: Selector

M&F 5.23: Sequence w/ condition

M&F 5.25



One action per tick

• Execution of a BT starts from the root 
– Root sends ticks with a certain frequency to its child 

• Tick is an enabling signal that allows the execution of a child

– Each node keeps track of current child to execute
– When execution of a node is allowed, it returns execution status to the parent 

• running if execution not yet finished, 
• success if it has achieved its goal, 
• failure if it didn’t,
• error if an exception occurs (failure of code, not failure of attempted behavior)

• At start of ‘tick’, walk the tree to find our current node
– If in it last frame continue, otherwise reset it
– Alternative: keep track of executing node(s)

• Store any currently processing nodes so they can be ticked directly within the behavior tree engine 
rather than per tick traversal of the entire tree



Node Types

• Leaves

– Conditions

– Actions

• Non-leaves

– Composites

– Decorators

15



Leaves

• Game logic

– Library

– custom

• Returns Success, Fail, Processing, or Error

• Init() – called first visit

• Run() –called until complete

• Parameters



Node Types

• Conditions

– Test for some game property (e.g. proximity of player to NPC)

– Each implemented as a task

• Actions

• Composites

• Decorators

17



Class BTCondition extends Node

{

void run () 

{

if (condition met) {

return True

}

return False

}

}

18



Node Types

• Conditions

• Actions

– Alter game state 

• (e.g. play animation, change character internal state, run AI code, play audio 
sample, etc.)

– Each is a task

• Composites

• Decorators

19



Class BTAction extends Node

{

void run () 

{

if (execution conditions not met) {

return False

}

// Do whatever you need to do

return True or False

}

}

20



Node Types

• Conditions

• Actions

• Composites

– Differentiates BTs from decision trees

– Allows for the combination of tasks without concern for what else is 
in the tree

• Decorators

21



Composite

• Composite Node:

– One or more children

– Sequence (AND), Selector (OR), or Random

– Short circuiting of Boolean logic

– Returns success or fail (based on children returns typically)



Composite Nodes: Selector

• Selector

– Run child tasks until one of them succeeds

– Return failure if all tasks fails

23



Composite Nodes: Sequence

• Selector

• Sequence

– Series of tasks that all must succeed

24



Class BTPriorityList extends Node
{

children = []

void run () 
{

if (execution conditions not met) do {
return False

}
for child in children do {

if child.run() == True do {
return True

}
}
return False

}
}

25



Class BTSequence extends Node
{

children = []

void run () 
{

if (execution conditions not met) do {
return False

}
for child in children do {

if child.run() == False do {
return False

}
}
return True

}
}

26



Example

• Enter room where player is standing. Player may close the 
door.

27



Example

What if the door is locked?
28

M Fig 5.25



Example

29M Fig 5.27



Non-deterministic Composites

• Strict order == predictable

• We saw partial-orders help this

• Fake partial-order with random shuffle

• 2 new (sub)types of composites

– ND Selector

– ND Sequence

– The original selector/sequence are deterministic (that is, totally 
ordered)

30



Node summary (so far)

• Conditions
• Action: leaf, alter state of game, move, play animation, etc.
• Composites:

– Prioritized list: choose subtask, with priority given to certain “questions”
– Sequence: do all subtasks in order
– Sequential-looping: sequence, start over when done
– Probabilistic: randomly choose a subtask
– One-off: pick one subtask (prioritized or random), but never repeat the 

choice

• Decorators

31



4th node type: Decorators

• “Wraps” other nodes

• Has a single child task and modifies it in some way
– Inverter (ie NOT)

– Filters (allows child to run (or not))

– Run Until Fail

– Repeater

– Succeeder (always true, runs child but doesn’t care about 
success/failure)

– Guard Resource (semaphores)

32



Example

33M 5.29



Semaphores

• Check for restricted resources

– Keeps a tally of available resources and number of users

– e.g. animation engine, pathfinding pool, etc.

• Typically provided in a language library

34



Guarding Resources

35

M 5.30



Advanced hacks

• Interrupt daemons: jump from a node to an entirely different 
section of the tree based on external conditions changing

• Shortcuts: jump from within one child node to another directly


